Inline: \(e^{ix}=\cos x +i\sin x\)
Stokes, centered:
$$\int_{\partial\Omega}\omega = \int_\Omega d\omega$$
Gauß:
$$\int_D ({\nabla\cdot} F)dV=\int_{\partial D} F\cdot ndS \tag A$$
Cauchy:
$$f(a) = \frac{1}{2\pi i} \oint\frac{f(z)}{z-a}dz \tag* B$$
Inline: \(e^{ix}=\cos x +i\sin x\)
Stokes, centered:
$$\int_{\partial\Omega}\omega = \int_\Omega d\omega$$
Gauß:
$$\int_D ({\nabla\cdot} F)dV=\int_{\partial D} F\cdot ndS \tag A$$
Cauchy:
$$f(a) = \frac{1}{2\pi i} \oint\frac{f(z)}{z-a}dz \tag* B$$